A limited feedback scheme for massive MIMO systems based on principal component analysis
نویسندگان
چکیده
Massive multiple-input multiple-output (MIMO) is becoming a key technology for future 5G cellular networks. Channel feedback for massive MIMO is challenging due to the substantially increased dimension of the channel matrix. This motivates us to explore a novel feedback reduction scheme based on the theory of principal component analysis (PCA). The proposed PCA-based feedback scheme exploits the spatial correlation characteristics of the massive MIMO channel models, since the transmit antennas are deployed compactly at the base station (BS). In the proposed scheme, the mobile station (MS) generates a compression matrix by operating PCA on the channel state information (CSI) over a long-term period, and utilizes the compression matrix to compress the spatially correlated high-dimensional CSI into a low-dimensional representation. Then, the compressed low-dimensional CSI is fed back to the BS in a short-term period. In order to recover the high-dimensional CSI at the BS, the compression matrix is refreshed and fed back from MS to BS at every long-term period. The information distortion of the proposed scheme is also investigated and a closed-form expression for an upper bound to the normalized information distortion is derived. The overhead analysis and numerical results show that the proposed scheme can offer a worthwhile tradeoff between the system capacity performance and implementation complexity including the feedback overhead and codebook search complexity.
منابع مشابه
Principal Component Analysis (PCA)-based Massive-MIMO Channel Feedback
Channel-state-information (CSI) feedback methods are considered, especially for massive or very large-scale multipleinput multiple-output (MIMO) systems. To extract essential information from the CSI without redundancy that arises from the highly correlated antennas, a receiver transforms (sparsifies) a correlated CSI vector to an uncorrelated sparse CSI vector by using a Karhunen-Loève transfo...
متن کاملAdaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay
In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...
متن کاملEfficient Feedback Mechanisms for FDD Massive MIMO under User-level Cooperation
Channel state information (CSI) feedback is a challenging issue in frequency division multiplexing (FDD) massive MIMO systems. This paper studies a cooperative feedback scheme, where the users first exchange their CSI with each other by exploiting device-to-device (D2D) communications, then compute the precoder by themselves, and feed back the precoder to the base station (BS). Analytical resul...
متن کاملInterference Alignment-based Precoding and User Selection with Limited Feedback in Two-cell Downlink Multi-user MIMO Systems
Interference alignment (IA) is a new approach to address interference in modern multiple-input multiple-out (MIMO) cellular networks in which interference is an important factor that limits the system throughput. System throughput in most IA implementation schemes is significantly improved only with perfect channel state information and in a high signal-to-noise ratio (SNR) region. Designing a ...
متن کاملLinear precoding design for massive MIMO based on the minimum mean square error algorithm
Compared with the traditional multiple-input multiple-output (MIMO) systems, the large number of the transmit antennas of massive MIMO makes it more dependent on the limited feedback in practical systems. In this paper, we study the problem of precoding design for a massive MIMO system with limited feedback via minimizing mean square error (MSE). The feedback from mobile users to the base stati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016